ECCV 2020 论文大盘点-光流篇

论文速递 shijie ⋅ 于 4个月前 ⋅ 549 阅读
来源:我爱计算机视觉


本文盘点 ECCV 2020 所有光流(Optical Flow)相关论文,总计 7 篇,值得一提的是来自普林斯顿大学的论文『RAFT: Recurrent All-Pairs Field Transforms for Optical Flow』获得 ECCV 2020 最佳论文奖。

下载包含这些论文的 ECCV 2020 所有论文:

ECCV 2020 论文合集下载,分类盘点进行中

RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

作者 | Zachary Teed, Jia Deng

单位 | 普林斯顿大学

论文 | https://arxiv.org/abs/2003.12039

代码 | https://github.com/princeton-vl/RAFT

备注 | ECCV 2020 Oral,ECCV 2020 最佳论文奖

在 KITTI 数据集上,RAFT 的 F1-all 误差是 5.10\%,相比先前的最佳结果(6.10\%)减少了 16\%;在 Sintel 数据集(final pass)上,RAFT 只有 2.855 像素的端点误差(end-point-error),相比先前的最佳结果(4.098 像素)减少了 30\%。另外,RAFT 具有强大的跨数据集泛化能力,并且在推理时间、训练速度和参数计数方面具有很高的效率。

ECCV 2020 Best Paper Award _ RAFT - Optical Flow_腾讯视频​v.qq.com图标


What Matters in Unsupervised Optical Flow?

作者 | Rico Jonschkowski, Austin Stone, Jonathan T. Barron, Ariel Gordon, Kurt Konolige, Anelia Angelova

单位 | 谷歌

论文 | https://arxiv.org/abs/2006.04902

代码 | https://github.com/google-research/google-research/tree/master/uflow

备注 | ECCV 2020 Oral

非监督光流估计研究。

Optical Flow_腾讯视频​v.qq.com图标

Optical Flow Distillation: Towards Efficient and Stable Video Style Transfer

作者 | Xinghao Chen, Yiman Zhang, Yunhe Wang, Han Shu, Chunjing Xu, Chang Xu

单位 | 华为诺亚方舟实验室;悉尼大学

论文 | https://arxiv.org/abs/2007.05146

备注 | ECCV 2020

将光流用于视频风格迁移,更高效更稳定

LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate Optical Flow Estimation

作者 | Tak-Wai Hui, Chen Change Loy

单位 | 港中文;南洋理工大学

论文 | https://arxiv.org/abs/2007.09319

代码 | https://github.com/twhui/LiteFlowNet3

备注 | ECCV 2020

FlowNet的最新演化版,效果好、速度更快、模型更小

LiteFlowNet3_腾讯视频​v.qq.com图标


Unsupervised Learning of Optical Flow with Deep Feature Similarity

作者 | Woobin Im, Tae-Kyun Kim, Sung-Eui Yoon

单位 | 韩国科学技术院;帝国理工学院

论文 | https://www.ecva.net/papers/eccv\_2020/papers\_ECCV/papers/123690171.pdf

代码 | https://github.com/iwbn/unsupsimflow

备注 | ECCV 2020

使用深度特征相似性挖掘在非监督光流估计中的应用

Improving Optical Flow on a Pyramid Level

作者 | Markus Hofinger, Samuel Rota Bulò, Lorenzo Porzi, Arno Knapitsch, Thomas Pock, Peter Kontschieder

单位 | Facebook;格拉茨技术大学

论文 | https://arxiv.org/abs/1912.10739

备注 | ECCV 2020

将由粗到细和特征金字塔引入光流估计,精度大幅提高。

Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient Hybrid Neural Networks

作者 | Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu, Kenneth Chaney, Kostas Daniilidis, Kaushik Roy

单位 | 普渡大学;宾夕法尼亚大学

论文 | https://arxiv.org/abs/2003.06696

代码 | https://github.com/chan8972/Spike-FlowNet

备注 | ECCV 2020

将脉冲神经网络用于事件相机的光流估计

[ECCV\'20 demo] Spike-FlowNet_腾讯视频​v.qq.com

成为第一个点赞的人吧 :bowtie:
回复数量: 0
暂无回复~
您需要登陆以后才能留下评论!