直播回放丨第 66 期:旷视朱本金-AutoAssign,目标检测中完全动态的正负样本标签分配方法

技术直播 Admin ⋅ 于 2个月前 ⋅ 237 阅读

一直以来,为让大家更好地了解学界业界优秀的论文和工作,极市已邀请了超过90位技术大咖嘉宾,并完成了64期极市线上直播分享,往期分享请前往http://bbs.cvmart.net/topics/149 ,也欢迎各位小伙伴自荐或推荐更多优秀的技术嘉宾到极市进行技术分享,与大家一起交流学习~

直播回放丨第66期:旷视朱本金-AutoAssign,目标检测中完全动态的正负样本标签分配方法

Label Assignment主要是指检测器(object detector)在训练阶段区分正负样本,并给feature map的每个位置赋予合适的学习目标的过程。它是目标检测所必需的一个步骤,可以说label assignment的结果直接决定了模型的学习目标,进而决定了模型性能的好坏。现有的代表性方法如RetinaNet、FCOS、FreeAnchor、ATSS 等,虽然已经取得了优异的性能,但仍旧存在过于依赖人工先验和设计、不够自适应等问题。

本次分享,我们邀请到了旷视研究院研究员朱本金,为大家介绍最新相关研究成果,即AutoAssign - 目标检测中完全动态的正负样本标签分配方法。这是一种完全端到端的动态label assignment策略,克服了以往label assignment中存在的问题,实验了SOTA的性能和良好的迁移性。

论文链接:https://arxiv.org/pdf/2007.03496.pdf


➤详情传送门

极市直播丨旷视朱本金:AutoAssign,目标检测中完全动态的正负样本标签分配方法


➤分享大纲

一、Label Assignment背景及现状
1、问题定义
2、现有方法的有效性及问题
二、AutoAssign原理解析
1、Motivation
2、Prior - Center Weighting
3、Instance - Confidence Weighting
三、AutoAssign实验结果及分析
1、消融实验
2、可视化及分析
3、性能和适用性
四、总结及展望


➤回放视频链接

https://www.bilibili.com/video/BV1Mf4y197Ba

➤部分PPT截图

file
file
file

➤往期视频在线观看

B站:http://space.bilibili.com/85300886#!/
腾讯视频:http://v.qq.com/vplus/8be9a676d97c74ede37163dd964d600c
往期线上分享集锦:http://bbs.cvmart.net/topics/149/cvshare

微信公众号: 极市平台(ID: extrememart )
每天推送最新CV干货

成为第一个点赞的人吧 :bowtie:
回复数量: 0
暂无回复~
您需要登陆以后才能留下评论!