当 .NET 遇见 ResNet 会发生什么?

技术讨论 小白学CV ⋅ 于 2个月前 ⋅ 329 阅读
来源:https://mp.weixin.qq.com/s/YOkOssFN9X1MxMvdlRzVTQ

1.前言

这篇文章主要以几篇经典的分割论文为切入点,浅谈一下当Unet遇见ResNet会发生什么?

2. UNet

首先回顾一下UNet,UNet的结构如下图所示:

「从UNet的网络结构我们会发现两个最主要的特点,一个是它的U型结构,一个是它的跳层连接。」 其中UNet的编码器一共有4次下采样来获取高级语义信息,解码器自然对应了4次上采样来进行分辨率恢复,为了减少下采样过程带来的空间信息损失跳层连接被引入了,通过Concat的方式使得上采样恢复的特征图中包含更多low-level的语义信息,使得结果的精细程度更好。

使用转置卷积的UNet参数量是31M左右,如果对其channel进行缩小例如缩小两倍,参数量可以变为7.75M左右,缩小4倍变成2M左右,可以说是非常的轻量级了。UNet不仅仅在医学分割中被大量应用,也在工业界发挥了很大的作用。

3. ResNet

再来简单回顾一下ResNet。

在ResNet之前普遍认为网络的深度越深,模型的表现就更好,因为CNN越深越能提取到更高级的语义信息。但论文的实验发现,通过和浅层网络一样的方式来构建深层网络,结果性能反而下降了,这是因为网络越深越难训练。实验如Figure1所示:

因此网络的深度不能随意的加深,前面介绍的GoogLeNet和VGG16/19均在加深深度这件事情上动用了大量的技巧。那么到底什么是残差呢?

首先,浅层网络都是希望学习到一个恒等映射函数$H(x)=x$,其中$=$指的是用$H(x)$这个特征/函数来代表原始的$x$的信息,但随着网络的加深这个恒等映射变得越来越难以拟合。即是用BN这种技巧存在,在深度足够大的时候网络也会难以学习这个恒等映射关系。因此ResNet提出将网络设计为$H(x)=F(x)+x$,然后就可以转换为学习一个残差函数$F(x)=H(x)-x$,只要残差为$0$,就构成了一个恒等映射$H(x)=x$,并且相对于拟合恒等映射关系,拟合残差更容易。残差结构具体如Figure2所示,identity mapping表示的就是恒等映射,即是将浅层网络的特征复制来和残差构成新的特征。其中恒等映射后面也被叫作跳跃连接(skip connrection)或者短路连接(shortcut connection),这一说法一直保持到今天。同时我们可以看到一种极端的情况是残差映射为$0$,残差模块就只剩下$x$,相当于什么也不做,这至少不会带来精度损失,这个结构还是比较精巧的。

为什么残差结构是有效的呢?这是因为引入残差之后的特征映射对输出的变化更加敏感,也即是说梯度更加,更容易训练。从图2可以推导一下残差结构的梯度计算公式,假设从浅层到深层的学习特征$y=x+F(x,W)$,其中$F(x,W)$就是带权重的卷积之后的结果,我们可以反向求出损失函数对$x$的提取$\frac{dloss}{dx}=\frac{dloss}{dy} \times \frac{dy}{dx}=\frac{dloss} { dy} *(1+\frac{dF(x,W)}{dx})$,其中$\frac{dloss}{dy}$代表损失函数在最高层的梯度,小括号中的$1$表示残差连接可以无损的传播梯度,而另外一项残差的梯度则需要经过带有可学习参数的卷积层。另外残差梯度不会巧合到全部为$-1$,而且就算它非常小也还有$1$这一项存在,因此梯度会稳定的回传,不用担心梯度消失。同时因为残差一般会比较小,残差学习需要学习的内容少,学习难度也变小,学习就更容易。

4. 当UNet初见ResNet

我们知道UNet做下采样的BackNone是普通的CBR模块(Conv+BN+ReLU)堆叠的,一个自然的想法就是如果将学习更强的ResNet当作UNet的BackBone效果是否会更好呢?

CVPR 2017的LinkNet给出了答案。LinkNet的网络结构如下所示:

其中,conv 代表卷积,full-conv 代表全卷积,/2代表下采样的步长是2*2代表上采样的因子是2。 在卷积层之后添加 BN,后加 ReLU。左半部分表示编码,右半部分表示解码。编码块基于ResNet18。编解码模块如下所示。

这项工作的主要贡献是在原始的UNet中引入了残差连接,并直接将编码器与解码器连接来提高准确率,一定程度上减少了处理时间。通过这种方式,保留编码部分中不同层丢失的信息,同时,在进行重新学习丢失的信息时并未增加额外的参数与操作。在Cittycapes和CamVID数据集上的实验结果证明残差连接的引入(LinkNet without bypass)使得mIOU获得了提升。

这篇论文的主要提升技巧在于它的bypass技巧,但我们也可以看到ResNet也进一步对网络的效果带来了改善,所以至少说明ResNet是可以当成BackBone应用在UNet的,这样结果至少不会差。

5. 当UNet再见ResNet

CVPR 2018北邮在DeepGlobe Road Extraction Challenge全球卫星图像道路提取)比赛中勇夺冠军,他们提出了一个新网络名为D-LinkNet,论文链接以及代码/PPT见附录。

D-LinkNet使用LinkNet作为基本骨架,使用在ImageNet数据集上与训练好的ResNet作为网络的encoder,并在中心部分添加带有shortcut的dilated-convolution层,使得整个网络识别能力更强、接收域更大、融合多尺度信息。网络中心部分展开示意图如下:

这篇论文和ResNet的关系实际上和LinkNet表达出的意思一致,也即是将其应用在BackBone部分增强特征表达能力。

6. 最后,ResNet+UNet被玩出了花

这篇文章其实是比上两篇文章早的,但我想放到最后这个位置来谈一下,这篇文章是DLMIA 2016的文章,名为:「The Importance of Skip Connections in Biomedical Image Segmentation」 。这一网络结构如下图所示,对图的解释来自akkaze-郑安坤的文章(https://zhuanlan.zhihu.com/p/100440276):

(a) 整个网络结构

使用下采样(蓝色):这是一条收缩路径。

上采样(黄色):这是一条不断扩大的路径。

这是一个类似于U-Net的FCN架构。

并且从收缩路径到扩展路径之间存在很长的跳过连接。

(b)瓶颈区

使用$1×1Conv-3×3Conv-1×1Conv$,因此称为瓶颈。 它已在ResNet中使用。

在每次转化前都使用$BN-ReLU$,这是激活前ResNet的想法。

(c)基本块

两个$3×3$卷积,它也用在ResNet中。

(d)简单块

$1$个$3×3$卷积

(b)-(d)

所有块均包含短跳转连接。

下面的Table1表示整个网络的维度变化:

接下来是这节要分析的重点了,也就是长短跳过网络中两种不同类型的跳跃连接究竟对UNet的结果参生了什么影响?

这里训练集以$30$张电子显微镜(EM)图像为数据集,尺寸为$512×512$。 $25$张图像用于训练,其余$5$张图像用于验证。而测试集是另外$30$张图像。

下面的Figure3为我们展示了长短跳过连接,以及只有长跳过连接,只有短跳过连接对准确率和损失带来的影响:

下面来看一可视化权重分析:

(a)长跳和短跳连接

当长跳转和短跳转连接都存在时,参数更新看起来分布良好。

(b)仅长跳连接具有9个重复的简单块

删除短跳过连接后,网络的较深部分几乎没有更新。

当保留长跳连接时,至少可以更新模型的浅层部分。

(c)仅长跳连接具有3个重复的简单块

当模型足够浅时,所有层都可以很好地更新。

(d)仅长跳连接具有7个重复的简单块,没有BN。

论文给出的结论如下:

  • 没有批量归一化的网络向网络中心部分参数更新会不断减少。
  • 根据权值分析的结论,由于梯度消失的问题(只有短跳连接可以缓解),无法更有效地更新靠近模型中心的层。

所以这一节介绍的是将ResNet和UNet结合之后对跳跃连接的位置做文章,通过这种长跳短跳连接可以使得网络获得更好的性能。

7. 总结

这篇文章只是对我个人阅读ResNet相关的类UNet分割结构的一点小总结,希望能起到一点作用科普和给你带来一点点启发。

附录

LinkNet:https://arxiv.org/abs/1707.03718

D-LinkNet:https://openaccess.thecvf.com/content\_cvpr\_2018\_workshops/w4/html/Zhou\_D-LinkNet\_LinkNet\_With\_CVPR\_2018\_paper.html

D-LinkNet代码和PPT:https://github.com/zlkanata/DeepGlobe-Road-Extraction-Challenge

The Importance of Skip Connections inBiomedical Image Segmentation:https://arxiv.org/pdf/1608.04117.pdf

https://zhuanlan.zhihu.com/p/100440276

大白

成为第一个点赞的人吧 :bowtie:
回复数量: 0
暂无回复~
您需要登陆以后才能留下评论!