• 问答
  • 技术
  • 实践
  • 资源
PyTorch 扩展自定义 PyThon/C++(CUDA) 算子的若干方法总结
技术讨论

作者丨奔腾的黑猫@知乎
来源丨https://zhuanlan.zhihu.com/p/158643792

在做毕设的时候需要实现一个PyTorch原生代码中没有的并行算子,所以用到了这部分的知识,再不总结就要忘光了= =,本文内容主要是PyTorch的官方教程的各种传送门,这些官方教程写的都很好,以后就可以不用再浪费时间在百度上了。由于图神经网络计算框架PyG的代码实现也是采用了扩展的方法,因此也可以当成下面总结PyG源码文章的前导知识吧 。

第一种情况:使用PyThon扩展PyTorch

使用PyThon扩展PyTorch准确的来说是在PyTorch的Python前端实现自定义算子或者模型,不涉及底层C++的实现。这种扩展方式是所有扩展方式中最简单的,也是官方首先推荐的,这是因为PyTorch在NVIDIA cuDNN,Intel MKL或NNPACK之类的库的支持下已经对可能出现的CPU和GPU操作进行了高度优化,因此用Python扩展的代码通常足够快。

比如要扩展一个新的PyThon算子(torch.nn)只需要继承torch.nn.Module并实现其forward方法即可。详细的过程请参考官方教程传送门:

Extending PyTorch​pytorch.org

第二种情况:使用pybind11构建共享库形式的C++和CUDA扩展

但是如果我们想对代码进行进一步优化,比如对自己的算子添加并行的CUDA实现或者连接个OpenCV的库什么的,那么仅仅使用Python进行扩展就不能满足需求;其次如果我们想序列化模型,在一个没有Python环境的生产环境下部署,也需要我们使用C++重写算法;最后考虑到考虑到多线程执行和性能原因,一般Python代码也并不适合做部署。因此在对性能有要求或者需要序列化模型的场景下我们还是会用到C++扩展。

下面我先把官方教程传送门放在这里:

CUSTOM C++ AND CUDA EXTENSIONS​pytorch.org

对于一种典型的扩展情况,比如我们要设计一个全新的C++底层算子,其过程其实就三步:

第一步:使用C++编写算子的forward函数和backward函数

第二步:将该算子的forward函数和backward函数使用pybind11绑定到python上

第三步:使用setuptools/JIT/CMake编译打包C++工程为so文件

注意到在第一步中,我们不仅仅要实现forward函数也要实现backward函数,这是因为在C++端PyTorch目前不支持自动根据forward函数推导出backward函数,所以我们必须要对自己算子的反向传播过程完全清楚。一个需要注意的地方是,你可以选择直接在C++中继承torch::autograd类进行扩展;也可以像官方教程中那样在C++代码中实现forward和backward的核心过程,而在python端继承PyTorch的torch.autograd.Function类。

在C++端扩展forward函数和backward函数的需要注意以下规则:

(1)首先无论是forward函数还是backward函数都需要声明为静态函数

(2)forward函数可以接受任意多的参数并且应该返回一个 variable list或者variable;forward函数需要将[torch::autograd::AutogradContext](https://link.zhihu.com/?target=https%3A//pytorch.org/cppdocs/api/structtorch_1_1autograd_1_1_autograd_context.html%23structtorch_1_1autograd_1_1_autograd_context) 作为自己的第一个参数。Variables可以被使用ctx->save_for_backward保存,而其他数据类型可以使用ctx->saved_data<std::string,at::IValue>pairs的形式保存在一个map中。

(3)backward函数第一个参数同样需要为torch::autograd::AutogradContext,其余的参数是一个variable_list,包含的变量数量与forward输出的变量数量相等。它应该返回和forward输入一样多的变量。保存在forward中的Variable变量可以通过ctx->get_saved_variables而其他的数据类型可以通过ctx->saved_data获取。

请注意,backward的输入参数是自动微分系统反传回来的参数梯度值,其需要和forward函数的返回值位置一一对应的;而backward的返回值是对各参数根据自动微分规则求导后的梯度值,其需要和forward函数的输入参数位置一一对应,对于不需要求导的参数也需要使用空Variable占位。

// PyG的C++扩展就选择的是直接继承PyTorch的C++端的torch::autograd类进行扩展
// 下面是PyG的一个ScatterSum算子的扩展示例
// 不用纠结这个算子的具体内容,对扩展的算子的结构有一个大致了解即可
class ScatterSum : public torch::autograd::Function<ScatterSum> {
public:
  // AutogradContext *ctx指针可以操作
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index, int64_t dim,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    dim = dim < 0 ? src.dim() + dim : dim;
    ctx->saved_data["dim"] = dim;
    ctx->saved_data["src_shape"] = src.sizes();
    index = broadcast(index, src, dim);
    auto result = scatter_fw(src, index, dim, optional_out, dim_size, "sum");
    auto out = std::get<0>(result);
    ctx->save_for_backward({index});
    // 如果在扩展的C++代码中使用非Aten内建操作修改了tensor的值,需要对其进行脏标记
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});  
    return {out};
  }
 // grad_outs是out参数反传回来的梯度值
  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto dim = ctx->saved_data["dim"].toInt();
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::gather(grad_out, dim, index, false);
    // 不需要求导的参数需要空Variable占位
    return {grad_in, Variable(), Variable(), Variable(), Variable()};
  }
};

由于涉及到在C++环境下操作张量和反向传播等操作,因此我们需要对PyTorch的C++后端的库有所了解,主要就是Torch和Aten这两个库,下面我简要介绍一下这两兄弟。

其中Torch是PyTorch的C++底层实现(PS:其实是先有的Torch后有的PyTorch,从名字也能看出来),FB在编码PyTorch的时候就有意将PyTorch的接口和Torch的接口设计的十分类似,因此如果你对PyTorch很熟悉的话那么你也会很快的对Torch上手。

Torch官方文档传送门:

The C++ Frontend​pytorch.org

安装PyTorch的C++前端的官方教程:

INSTALLING C++ DISTRIBUTIONS OF PYTORCH​pytorch.org

而Aten是ATen从根本上讲是一个张量库,在PyTorch中几乎所有其他Python和C ++接口都在其上构建。它提供了一个核心Tensor类,在其上定义了数百种操作。这些操作大多数都具有CPU和GPU实现,Tensor该类将根据其类型向其动态调度。和Torch相比Aten更接近底层和核心逻辑。

Aten源代码传送门:

https://github.com/zdevito/ATen/tree/master/aten/src​github.com

使用Aten声明和操作张量的教程:

TENSOR BASICS​pytorch.org

由于Pyorch的C++后端文档比较少,因此要多参考官方的例子,尝试去模仿官方教程的代码,同时可以通过Python前端的接口猜测后端接口的功能,如果没有文档了就读一读源码,还是有不少注释的,还能理解实现的逻辑。

第三种情况:为TORCHSCRIPT添加C++和CUDA扩展

首先简单解释一下TorchScript是什么,如果用官方的定义来说:“TorchScript是一种从PyTorch代码创建可序列化和可优化模型的方法。任何TorchScript程序都可以从一个Python进程中保存并可以在一个没有Python环境的进程中被加载​​。”通俗来说TorchScript就是一个序列化模型(即Inference)的工具,它可以让你的PyTorch代码方便的在生产环境中部署,同时在将PyTorch代码转化TorchScript代码时还会对你的模型进行一些性能上的优化。使用TorchScript完成模型的部署要比我们之前提到的使用C++重写要简单的多,因为是自动生成的。

TorchScript包含两种序列化模型的方法:tracingscript,两种方法各有其适用场景,由于和本文关系不大就不详细展开了,具体的官方教程传送门在此:

INTRODUCTION TO TORCHSCRIPT​pytorch.org

但是,TorchScript只能自动化的构造PyTorch的原生代码,如果我们需要序列化自定义的C++扩展算子,则需要我们显式的将这些自定义算子注册到TorchScript中,所幸的是,这一过程其实非常简单,整个过程和第二小节中使用pybind11构建共享库的形式的C++和CUDA扩展十分类似。官方教程传送门如下:

EXTENDING TORCHSCRIPT WITH CUSTOM C++ OPERATORS​pytorch.org

而对于自定义的C++类,如果要注册到TorchScript要稍微复杂一些,官方教程传送门如下:

EXTENDING TORCHSCRIPT WITH CUSTOM C++ CLASSES​pytorch.org

另外需要注意的是,如果想要编写能够被TorchScript编译器理解的代码,需要注意在C++自定义扩展算子参数中的数据类型,目前被TorchScript支持的参数数据类型有torch::Tensortorch::Scalar(标量类型),doubleint64_tstd::vector,而像float,int,short这些是不能作为自定义扩展算子的参数数据类型的。

目前就先总结这么多吧,这点东西居然写了一天,好累啊(*  ̄︿ ̄)。

  • 0
  • 0
  • 2589
收藏
暂无评论