轻松看懂机器学习十大常用算法

知识库 小白学CV ⋅ 于 2周前 ⋅ 710 阅读

通过本篇文章大家可以对ML的常用算法形成常识性的认识。没有代码,没有复杂的理论推导,仅是图解,介绍这些算法是什么以及如何应用(例子主要是分类问题)。以后有机会再对单个算法做深入地解析。

今天的算法如下:

1、决策树
2、随机森林算法
3、逻辑回归
4、SVM
5、朴素贝叶斯
6、K最近邻算法
7、K均值算法
8、Adaboost 算法
9、神经网络
10、马尔可夫

1. 决策树

file
file

2. 随机森林

在源数据中随机选取数据,组成几个子集
file
S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别
file
由 S 随机生成 M 个子矩阵
file
file

3. 逻辑回归

file
file

所以此时需要这样的形状的模型会比较好

file
file
file

再做一下变形,就得到了 logistic regression 模型

file

通过源数据计算可以得到相应的系数了

file

最后得到 logistic 的图形

file

4. SVM

support vector machine

要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好
file

将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1
file

点到面的距离根据图中的公式计算
file

所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题
file

举个栗子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1)
file

得到 weight vector 为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。
file

a 求出来后,代入(a,2a)得到的就是 support vector
a 和 w0 代入超平面的方程就是 support vector machine

5. 朴素贝叶斯

举个在 NLP 的应用
给一段文字,返回情感分类,这段文字的态度是positive,还是negative
file

为了解决这个问题,可以只看其中的一些单词
file

这段文字,将仅由一些单词和它们的计数代表
file

原始问题是:给你一句话,它属于哪一类
通过 bayes rules 变成一个比较简单容易求得的问题
file

问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率
栗子:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001
file

6. K最近邻

k nearest neighbours
给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类
栗子:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢
file

k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫

file

7. K均值

想要将一组数据,分为三类,粉色数值大,黄色数值小
最开心先初始化,这里面选了最简单的 3,2,1 作为各类的初始值
剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别

file

分好类后,计算每一类的平均值,作为新一轮的中心点

file

几轮之后,分组不再变化了,就可以停止了

file
file

8. Adaboost

adaboost 是 bosting 的方法之一

bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。

下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度
file

adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等
file

training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小
file

而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果
file

9. 神经网络

Neural Networks 适合一个input可能落入至少两个类别里
NN 由若干层神经元,和它们之间的联系组成
第一层是 input 层,最后一层是 output 层
在 hidden 层 和 output 层都有自己的 classifier

file

input 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1

同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和 bias

这也就是 forward propagation

file

10. 马尔可夫

Markov Chains 由 state 和 transitions 组成

栗子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到 markov chain

步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率

file

这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率

file

生活中,键盘输入法的备选结果也是一样的原理,模型会更高级

file


来源:人人宽客@微信公众号


推荐阅读:
面经 | 拿到 Google offer,我做了哪些努力?
深圳汇顶科技股份有限公司面试经验(算法(图像)岗位)
2019 秋招 cv 岗求职心得

file
△ 关注极市平台
获得最新CV干货

大白

成为第一个点赞的人吧 :bowtie:
回复数量: 0
暂无回复~
您需要登陆以后才能留下评论!