基于人脸关键区域提取的人脸识别

insightface制作自己的数据及其训练

2019.10.21: 更新人脸检测模型,检测器是基于SSH,相较于原版检测,该版本主要更新了误检

2019.10.01: 公布人脸识别模型,模型基于glint和私有数据训练,在私有数据上拥有0.88的F1-score,insightface原始模型0.56

说明:算法集成insightface:https://github.com/deepinsight/insightface

改进地方:ssh(人脸检测)+prnet(68 landmark 人脸对齐, 3d人脸mask)+insightface

(1)修改人脸检测器(优化后的SSH,误检率更低,对大角度和blur的face进行过滤)
(2)使用68个点的landmark,prnet的对齐效果更准
(3)利用prnet拟合有效区域的人脸位置,抠出背景,以平均人脸像素填充背景,减少噪声影响,会在图片质量较好的情况下提高识别

MASK0

MASK1


0.安装

(1)mxnet
(2)tensorflow


1.生成对齐后的数据集

1.1.数据下载
http://trillionpairs.deepglint.com/data

cd make_rec

1.2.生成,'.lst, .rec, .idx, property'

(1)为了合并数据,可采用generate_lst.sh

(2)property是属性文件,里面内容是类别数和图像大小,例如

1000,112,112 其中1000代表人脸的类别数目,图片格式为112x112(一直都不知道怎么自动生成这个,我是自己写的)

(3)sh generate_lst.sh

1.3.生成测试文件.bin

python gen_valdatasets.py

1.4.生成数据

python3 gen_datasets.py #完成后会output下生成train.lst


2.验证model精度

2.1.在bash

python3 -u ./src/eval/verification.py --gpu 0 --model "./models/glint-mobilenet/model,1" --target 'lfw'

2.2.快捷

sh verification.sh


3.训练

3.1.在bash里面训练

CUDA_VISIBLE_DEVICES='2,3,4,5' python3 -u train.py --network r100 --loss arcface --per-batch-size 64 2>&1 > log.log &

3.2.如果想要合并不同数据集

CUDA_VISIBLE_DEVICES=0 python3 src/data/dataset_merge.py --include 001_data,002_data --output ms1m+vgg --model ../../models/model,1


4.result

'参数设置' network backbone: r100 ( output=E, emb_size=512, prelu )

loss function: arcface(m=0.5)

batch-size:256, 4gpu, config.fc7_wd_mult = 10

lr = 0.004, lr_steps [105000, 125000, 150000], default.wd = 0.0005, end with 180001,

then retrain with lr = 0.0004, lr_steps[200000, 300000, 400000], default.wd = 0.00001

Data LFW CFP_FP AgeDB30
ACCU(%) 99.82+ 98.50+ 98.25+


5.预训练模型

人脸检测模型请参见 https://github.com/bleakie/mxnet-ssh-face-detection (在自有数据集上标定+修改部分训练参数,可在FDDB上取得98.7%)

人脸识别预训练模型(模型基于glint和私有数据训练,backbone resnet152,在私有数据上拥有0.88的F1-score,insightface原始模型0.56,因为进行了私有数据的增强训练,在开源测试集上效果一般)
链接: https://drive.google.com/drive/folders/1zWadm9yu0rcjIQ_MnoXAQ27kA-CJYGms?usp=sharing 百度云链接: https://pan.baidu.com/s/1ySZeJWa-r7oS4E_8dpdo4w 提取码: enph


Todo

释放训练好的模型(PRNET,更新人脸检测模型基于Retina的RetinaDetection 链接:https://github.com/bleakie/RetinaDetector

近期会更新新的识别策略,可相较于现版本提高2%


来源:bleakie @ github


推荐阅读:
BlazeFace: 亚毫秒级的人脸检测器 (含代码)
ICCV 2017:世界最大人脸对齐数据集,距离解决人脸对齐已不远
人脸识别的下一挑战:识破蒙面人

file
△ 关注极市平台
获得最新CV干货

大叔